

1. \qquad
2. \qquad
3. \qquad

Meet 4 - January 15, 2020
The word "compute" calls for an exact answer in simplest form.

Round 1: Volume and Surface Area of Solids

1. The edges of a rectangular solid have lengths in the ratio $1: 3: 5$. The volume of the solid is 120 cubic cm . Compute the surface area of the solid in square cm .
2. A cube is inscribed in a sphere of radius 6 cm . Compute the volume of the space inside the sphere, but outside the cube, in cubic cm .
3. A right prism has bases that are regular hexagons. Given that the height of the prism has integer length, and the surface area of the prism is $(300 \sqrt{3}+300)$ square cm , compute the volume of the prism in cubic cm .

Greater Boston Mathematics League

ANSWERS

1. \qquad
2. \qquad
3. \qquad

Meet 4 - January 15, 2020
The word "compute" calls for an exact answer in simplest form.

Round 2: Algebra - Inequalities and Absolute Value

1. Compute the number of integers n that satisfy $20.20 \leq 4 n+5 \leq 2020$.
2. Solve for $x:|x|-4+|x+4|=2 x+4$.
3. There are four values of x that satisfy $\left|\sqrt{9 x^{2}-12 x+4}-16\right|=6$. Compute the sum of the squares of these four values.

ANSWERS
4. \qquad
5. \qquad
6. \qquad

Meet 4 - January 15, 2020
The word "compute" calls for an exact answer in simplest form.

Round 3: Geometry - Similar Polygons, Circles, Area

1. Two circles O_{1} and O_{2} have radii R and r respectively. If $R-r=4$ and the area of O_{1} is 4 times the area of O_{2}, compute r.
2. In trapezoid $G B M L, \overline{G B} \| M L, \overline{G M}$ intersects $\overline{B L}$ at $X, G X: M X=3: 5$, and the area of $G B M L$ is 256 . Compute the area of $\triangle B M X$.
3. Two concentric circles with center O are drawn. The radius of the smaller circle is 3 . A diameter $\overline{P E}$ of the larger circle is drawn, and segment $\overline{P T}$ is tangent to the smaller circle at D.

Given that the area of $\triangle P E T$ is 24 , compute the radius of the larger circle.

Greater Boston Mathematics League

ANSWERS
1.
2. \qquad
3. \qquad

Meet 4 - January 15, 2020

The word "compute" calls for an exact answer in simplest form.

Round 4: Algebra 2 - Sequences and Complex Numbers

1. Given that $i=\sqrt{-1}$, compute the value of $\frac{1+i+i^{2}+\cdots+i^{20}}{1+i+i^{2}+\cdots+i^{17}}$ in the form $A+B i$, where A and B are real numbers.
2. Let $i=\sqrt{-1}$. In a geometric sequence $\left\{a_{n}\right\}, a_{1}=2+i$ and $a_{2}=5$. Compute a_{4} in simplest $a+b i$ form.
3. For a given sequence $\left\{b_{n}\right\}, b_{1}$ and b_{2} are integers and $b_{n+2}=b_{n+1}-3 b_{n}$ for all positive integers n. Given that $b_{4}+b_{8}=-175$ and $b_{5}+b_{7}=-13$, compute $b_{1}^{3}+b_{2}^{3}$.

ANSWERS
4. \qquad
5. \qquad
6. \qquad

Meet 4 - January 15, 2020

The word "compute" calls for an exact answer in simplest form.

Round 5: Advanced - Conics

1. Compute the coordinates of the focus of the parabola with equation $x^{2}-20 x+20 y+2020=0$.
2. Circle C has equation $x^{2}-6 x+y^{2}-4 y=36$. Line ℓ is drawn from $P(-5,-4)$ tangent to circle C at point X. Compute $P X$.
3. The ellipse with equation $\frac{(x-1)^{2}}{49}+\frac{(y-2)^{2}}{33}=1$ has vertices V_{1} and V_{2} and foci F_{1} and F_{2}. A hyperbola has vertices F_{1} and F_{2} and foci V_{1} and V_{2}. Compute the y-coordinate of the fourth-quadrant point on the graph of the hyperbola for which the x-coordinate is 9 .
ANSWERS

(3 pts) 1. \qquad
(3 pts) 2. \qquad
(4 pts) 3. \qquad

Meet 4 - January 15, 2020
The word "compute" calls for an exact answer in simplest form.

Team Round

1. A positive integer is chosen at random from the set of positive integer factors of 2020 . Compute the probability that the chosen factor is less than 20.
2. Gene Beamel chooses 9 integers at random without replacement from the set of 14 integers $\{1,2,3, \cdots, 13,14\}$. Compute the probability that the median of Gene's 9 integers is 7 .
3. Jan chooses a set of four letters at random from the letters in the word PERPENDICULAR. Compute the number of distinct ways Jan may do this. Note: the set $\{D, E, E, R\}$ is not distinct from the set $\{R, E, E, D\}$.

GBML Answer Sheet

Meet \#4

Round 1.

1. 184
2. $288 \pi-192 \sqrt{3}$ or $96(3 \pi-2 \sqrt{3})$
3. $750 \sqrt{3}$

Round 4.

1. $\frac{1}{2}-\frac{1}{2} i$
2. $15-20 i$
3. 19

Round 5.

1. $(10,-101)$
2. $\sqrt{51}$
3. $2-3 \sqrt{11}$

Round 3.

1. 4
2. 60
3. 5

Team Round

1. $\frac{5}{12}$
2. $\frac{75}{286}$
3. 321

GBML Contest \#4. SOLUTIONS

Round 1: Volume and Surface Area

1. 184 The edges have lengths $x, 3 x$, and $5 x$, so the volume is $15 x^{3}=120 \rightarrow x=2$. The surface area is $2 \cdot x \cdot 3 x+2 \cdot x \cdot 5 x+2 \cdot 3 x \cdot 5 x=46 x^{2}$, or $46 \cdot 2^{2}=\mathbf{1 8 4}$ square cm .
2. $288 \pi-192 \sqrt{3}$ or $\mathbf{9 6}(\mathbf{3} \pi-2 \sqrt{3})$ The volume of the sphere is $\frac{4}{3} \pi(6)^{3}=288 \pi$ cubic cm . A diameter of the sphere is a space diagonal of the cube, so the side length s of the cube is found by solving $s \sqrt{3}=12 \rightarrow s=4 \sqrt{3} \mathrm{~cm}$. The volume of the cube is thus $(4 \sqrt{3})^{3}=192 \sqrt{3}$ cubic cm . The answer is $(288 \pi-192 \sqrt{3})$ cubic cm.
3. $750 \sqrt{3}$ Let the side length of one of the hexagons be s and the height of the prism be h.

Then the surface area of a right regular hexagonal prism is $2 \cdot \frac{6 s^{2} \sqrt{3}}{4}+6 s h$, or $3 s^{2} \sqrt{3}+6 s h$. This surface area is equal to $(300 \sqrt{3}+300)$, and therefore, $6 s h=300$ or $6 s h=300 \sqrt{3}$. Suppose $6 s h=300 \sqrt{3}$; then $3 s^{2} \sqrt{3}=300$, which implies $s=\frac{10}{3^{1 / 4}}$ and $h=5 \cdot 3^{3 / 4}$, which is not an integer, so this is a contradiction. As a result, $6 s h=300$, and $3 s^{2}=300 \rightarrow s=10 \rightarrow h=5$. Now the volume of the prism is $\frac{6 s^{2} \sqrt{3}}{4} \cdot h=\frac{6 \cdot 100 \sqrt{3}}{4} \cdot 5=\mathbf{7 5 0} \sqrt{\mathbf{3}}$ cubic cm .

Round 2: Inequalities and Absolute Value

1. $\mathbf{5 0 0}$ By algebra, the given inequality is equivalent to $15.20 \leq 4 n \leq 2015 \rightarrow 3.8 \leq n \leq 503.75$. The integers that satisfy this are $\{4,5,6, \cdots, 503\}$, and there are $503-4+1=\mathbf{5 0 0}$ of them.
2. $-\mathbf{- 2}$ There are three cases: $x \geq 0,-4<x<0$, and $x \leq-4$.

If $x \geq 0$, the given equation is equivalent to $x-4+x+4=2 x+4$, which has no solution.
If $-4<x<0$, the given equation is equivalent to $-x-4+x+4=2 x+4 \rightarrow x=-2$.
If $x \leq-4$, the given equation is equivalent to $-x-4-x-4=2 x+4 \rightarrow-12=4 x \rightarrow x=-3$, which does not satisfy $x \leq-4$.
The solution is $\mathbf{- 2}$.
3. $\frac{\mathbf{1 1 8 4}}{\mathbf{9}}$ or $\mathbf{1 3 1} \frac{\mathbf{5}}{\mathbf{9}}$ Rewrite $\left|\sqrt{9 x^{2}-12 x+4}-16\right|=6$ as
$\left|\sqrt{(3 x-2)^{2}}-16\right|=6 \rightarrow| | 3 x-2|-16|=6$. Therefore, $|3 x-2|-16= \pm 6$ so $|3 x-2|=22$ or $|3 x-2|=10$. The first of these latter absolute value equations results in $3 x-2=22 \rightarrow x=8$ or $3 x-2=-22 \rightarrow x=\frac{-20}{3}$. The second of the latter absolute value equations results in $3 x-2=10 \rightarrow x=4$ or $3 x-2=-10 \rightarrow x=\frac{-8}{3}$. The sum of the squares of these four values is $\frac{400}{9}+\frac{64}{9}+16+64=\frac{\mathbf{1 1 8 4}}{\mathbf{9}}$.

Round 3: Geometry - Areas and Volumes

1. 4 The problem situation is equivalent to $\pi(r+4)^{2}=4 \pi r^{2}$, which implies $4 r^{2}=r^{2}+8 r+16 \rightarrow 3 r^{2}-8 r-16=0$. Factoring yields $(3 r+4)(r-4)=0$, and the positive solution to this equation is 4 . Alternatively, the fact that the area of O_{1} is 4 times the area of O_{2} implies $R=2 r$, so $2 r-r=4 \rightarrow r=4$.
2. 60 Because $G X: M X=3: 5$, it follows that the areas of $\triangle G X B$ and $\triangle M X L$ are in the ratio $9: 25$, so these are $9 k$ and $25 k$ for some k. Also, the areas of $\triangle G X B$ and $\triangle B M X$ are in the ratio $3: 5$, so the area of $\triangle B M X$ is $15 k$. Similarly, the area of $\triangle G X L$ is $15 k$. Solve $9 k+15 k+25 k+15 k=256$ to obtain $k=4$ and thus the area of $\triangle B M X$ is $15 \cdot 4=\mathbf{6 0}$.
3. 5 Draw in segment $O D$. It follows that $\triangle D P O \sim \triangle T P E$, so $O D=3$ and $T E=6$. It is also true that $\triangle P E T$ is right because $\angle P T E$ is inscribed on a diameter. Because the area of $\triangle P E T$ is 24 , it follows that $\frac{1}{2} \cdot 6 \cdot T P=24 \rightarrow T P=8$. Now, $\triangle P E T$ is a $6-8-10$ right triangle, so $P E=10$ and therefore the radius of the larger circle is $10 \div 2=\mathbf{5}$.

Round 4: Algebra 2 - Sequences and Complex Numbers

1. $\frac{\mathbf{1}}{\mathbf{2}}-\frac{\mathbf{1}}{\mathbf{2}} \mathbf{i}$ Recognize that $i^{k}+i^{k+1}+i^{k+2}+i^{k+3}=0$ for all integers k, so the desired quotient is $\frac{1}{1+i}=\frac{1-i}{1-(-1)}$, or $\frac{\mathbf{1}}{\mathbf{2}}-\frac{\mathbf{1}}{\mathbf{2}} \mathbf{i}$.
2. $15-20 i$ First, find $r=\frac{a_{2}}{a_{1}}=\frac{5}{2+i}$. Rationalize the denominator to obtain
$r=\frac{5(2-i)}{(2+i)(2-i)}=\frac{10-5 i}{5}=2-i$. Then, $a_{4}=a_{2} \cdot r^{2}=5 \cdot(2-i)^{2}=5(3-4 i)=\mathbf{1 5}-\mathbf{2 0} \boldsymbol{i}$.
3. 19 Find $b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}$ in terms of b_{1} and \boldsymbol{b}_{2}. The algebra is shown below.
$b_{3}=b_{2}-3 b_{1}$
$b_{4}=b_{3}-3 b_{2}=\left(b_{2}-3 b_{1}\right)-3\left(b_{2}\right)=-2 b_{2}-3 b_{1}$
$b_{5}=b_{4}-3 b_{3}=\left(-2 b_{2}-3 b_{1}\right)-3\left(b_{2}-3 b_{1}\right)=-5 b_{2}+6 b_{1}$
$b_{6}=b_{5}-3 b_{4}=\left(-5 b_{2}+6 b_{1}\right)-3\left(-2 b_{2}-3 b_{1}\right)=b_{2}+15 b_{1}$
$b_{7}=b_{6}-3 b_{5}=\left(b_{2}+15 b_{1}\right)-3\left(-5 b_{2}+6 b_{1}\right)=16 b_{2}-3 b_{1}$
$b_{8}=b_{7}-3 b_{6}=\left(16 b_{2}-3 b_{1}\right)-3\left(b_{2}+15 b_{1}\right)=13 b_{2}-48 b_{1}$
The problem statement implies $11 b_{2}-51 b_{1}=-175$ and $11 b_{2}+3 b_{1}=-13$. Subtract equal quantities to obtain $-\mathbf{5 4 b} \boldsymbol{b}_{\mathbf{1}}=-\mathbf{1 6 2}$ and so $\boldsymbol{b}_{\mathbf{1}}=\mathbf{3}$. Substituting and solving, $\boldsymbol{b}_{2}=-\mathbf{2}$, and so the final answer is $3^{3}+(-2)^{3}=27-8=19$.

Round 5: Advanced - Conics

1. $(\mathbf{1 0}, \mathbf{- 1 0 1})$ Convert the given equation to the form $(x-h)^{2}=4 p(y-k)$. By algebra, the given equation is equivalent to $x^{2}-20 x+100=-20 y-2020+100 \rightarrow(x-10)^{2}=-20(y+96)$. The vertex is at $(10,-96)$, and $p=-20 / 4=-5$, so the focus is at $(\mathbf{1 0},-\mathbf{1 0 1})$.
2. $\sqrt{51}$ Find the center and radius of circle C by rewriting the equation as $x^{2}-6 x+9+y^{2}-4 y+4=36+9+4 \rightarrow(x-3)^{2}+(y-2)^{2}=49$. Thus the radius of circle C is $\sqrt{49}=7$ and the distance from P to the center of circle C is $\sqrt{8^{2}+6^{2}}=10$. Therefore, $P X=\sqrt{10^{2}-7^{2}}=\sqrt{51}$.
3. $\mathbf{2 - 3} \sqrt{\mathbf{1 1}}$ The center of the ellipse (and of the hyperbola) is (1,2). The vertices V_{1} and V_{2} are at $(1 \pm 7,2)$. The distance from the center to a focus is $\sqrt{49-33}=4$, so the foci F_{1} and F_{2} are at $(1 \pm 4,2)$. For the hyperbola, it is known that $c=7$ and $a=4$, so $b=\sqrt{33}$, and an equation of the hyperbola is $\frac{(x-1)^{2}}{16}-\frac{(y-2)^{2}}{33}=1$. The y-coordinate of the fourth-quadrant point on the graph of the hyperbola for which the x-coordinate is 9 is obtained by solving $\frac{8^{2}}{16}-\frac{(y-2)^{2}}{33}=1 \rightarrow \frac{(y-2)^{2}}{33}=3$, so $(y-2)^{2}=99$, and because we're looking for a fourth-quadrant point, the answer is $y=2-\sqrt{99}=\mathbf{2}-\mathbf{3} \sqrt{\mathbf{1 1}}$.

Team Round

1. $\frac{\mathbf{5}}{\mathbf{1 2}}$ Factor $2020=2^{2} \cdot 5 \cdot 101$, so there are $3 \cdot 2 \cdot 2=12$ positive integer factors of 2020 . Of these, five are less than 20 (namely $1,2,4,5$, and 10). Thus, the desired probability is $\frac{\mathbf{5}}{\mathbf{1 2}}$.
2. $\frac{\mathbf{7 5}}{\mathbf{2 8 6}}$ For the median to be 7 , four numbers must be less than 7 and four numbers must be greater than 7 . This can be done in $\binom{6}{4} \cdot\binom{7}{4}=\binom{6}{2} \cdot\binom{7}{3}=\frac{6 \cdot 5}{2 \cdot 1} \cdot \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}=15 \cdot 35$ ways. The sample space has size $\binom{14}{9}=\binom{14}{5}=\frac{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=14 \cdot 13 \cdot 11$, so the desired probability is $\frac{15 \cdot 35}{14 \cdot 13 \cdot 11}=\frac{\mathbf{7 5}}{\mathbf{2 8 6}}$.
3. 321 Proceed by cases. Suppose that all four letter are distinct. In this case, there are $\binom{10}{4}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1}=10 \cdot 3 \cdot 7=210$ sets of four letters.
Next, suppose there is exactly one pair among the four letters. In this case, there are three possible pairs and $\binom{9}{2}=36$ ways to choose the other two letters, so there are $3 \cdot 36=108$ sets of this type.
Now, suppose there are two pairs of letters. There are $\binom{3}{2}=3$ ways to choose the pairs, and this uniquely determines the sets.
The final answer is $210+108+3=\mathbf{3 2 1}$.

Author: George Reuter - coachreu@gmail.com
Reviewers: Mike Schockett - mschockett@comcast.net and Dick Olson - olson.re@gmail.com

